
1/9/2015 A survival guide for Unix beginners

http://matt.might.net/articles/basic-unix/ 1/11

Latest: Productivity tips for academics
Next: HOWTO: Get a great letter of recommendation
Prev: Writing CEK-style interpreters in Haskell
Rand: Higher-order list operations

Survival guide for Unix newbies
[article index] [email me] [@mattmight] [+mattmight] [rss]

As a professor, I worry that the upcoming generation of programmers is
missing out on the Unix experience, and with it, the power it grants.

Modern computing environments tend to favor form over function: the
primary objective in their design is ease of use for non-experts.

Unix is a naked celebration of function over form. The premium is on
control, efficiency and flexibility. Its audience is the power user.

The origin of Unix's power is an organic design philosophy that emphasizes
linguistic abstraction and composition.

In Unix, a word is worth a thousand mouse clicks.

I've written the short guide below as an introduction for those just getting
started with Unix or Linux. (I'll write follow-up articles covering
intermediate and advanced Unix.)

Please feel free to forward this series to a student, friend, partner or spouse
that needs a little help getting started.

Update: After this, see the companion post on settling into Unix.

1/9/2015 A survival guide for Unix beginners

http://matt.might.net/articles/basic-unix/ 2/11

What is computing with Unix?

Unix is a family of operating systems and environments that exploits the

power of linguistic abstraction and composition to orchestrate tasks.

Unix users spend a lot of time at the command line.

The command line (often called the console, the shell or the terminal) looks

something like this:

 $ _

When you type in a command like ls, it will give you feedback:

 $ ls
 Documents README.txt

 $ _

In this case, the ls command listed the files in the current directory.

Getting access to Unix

It was once a daunting task to get access to or install Unix. Fortunately, it's

no longer a hassle.

These days, the two most accessible flavors of Unix are Apple's OS X (based

on the BSD family of Unix) and Ubuntu Linux.

The easy option: OS X

OS X is a good way for many users to tip-toe into Unix.

What you're buying is a Unix machine that "just works."

To turn it into a complete Unix system, you'll need to install Apple's free

Xcode development suite (available from the Mac App Store) and the (free)

X11 server.

Xcode includes the compilers and interpreters you'll need to compile and

run many open source applications.

1/9/2015 A survival guide for Unix beginners

http://matt.might.net/articles/basic-unix/ 3/11

You'll need the X11 server to run traditional graphical applications for Unix.

The DIY option: Linux

When I was in high school, before CD burning was widely available and

when internet connections were slow, the best way to get Linux was to buy a

book with an installation CD.

(Given that there wasn't much in the way of online resources for Linux back

then, it was good to have a book that walked through the installation process

and explained all the features, too.)

A quick search of amazon shows no shortages of such books today.

These days, there are plenty of free options:

If you're a CS major, you should have access to a Unix shell account at

your school that you can acces with ssh. (See details on ssh below.)

You can set up your computer to dual boot into either your preferred

OS or Linux. Macs come with Boot Camp to make this easy. If you take

the dual boot route with a Windows PC, FIRST BACK UP YOUR

DATA. There is a chance you'll wipe out your files by accident. I

recommend adding a second internal hard drive if you want to set up a

dual boot with Linux for the first time.

You can burn a CD that lets you boot into or install Linux. I

recommend Ubuntu Linux for this.

You can also create a USB thumb drive that boots into Linux. I

recommend Ubuntu Linux for this as well.

You can run Linux inside your existing OS as a virtual machine.

VirtualBox is a freely available virtualization tool. (I personally use

VMware Fusion to run Windows on my Mac for those rare instances

where I need to see what a page looks like in an old version of IE.)

You can run cygwin on Windows to get a "Unix-like" environment.

(This isn't quite the real deal.)

You can buy a virtualized Linux server with remote access from a

service like linode.com. (might.net runs on a linode.)

Getting to the command line
Once you're into Unix, you'll want to get to the command line.

On Linux, you can press CTRL+ALT+F1 to get to a raw terminal, and

CTRL+ALT+F7 to get back to the window system. (In fact, CTRL+ALT+F1-

F6 will get you different terminal on most systems, and of course, you can

configure this.)

1/9/2015 A survival guide for Unix beginners

http://matt.might.net/articles/basic-unix/ 4/11

In most popular flavors of Linux, there is a way to open a graphical terminal

in a window.

On a Mac, it's Applications > Utilities > Terminal.

The filesystem: ls and cd
If you find yourself at a command prompt, run ls to list the files in the

current directory.

You might see something like this:

 $ ls
 Documents README.txt

 $ _

With ls /, you can list the contents of the root directory.

You'll notice several directories that are common to almost all Unices:

/bin, standard executables.

/sbin, important system executables.

/etc, system configuration files.

/var, frequently updated files like logs.

/root, home directory of the administrator account.

/home, a user account home directories. (/Users on a Mac.)

/opt, package-manager installed files.

/tmp, temporary files; usually wiped between boots.

/usr, user applications and utilities.

To change to a different directory, use the command cd.

For example:

cd Documents to change to the Documents sub-folder.

cd .. to change to the parent directory.

cd to change to your home directory.

Paths

To print the path of the current working directory, use pwd:

1/9/2015 A survival guide for Unix beginners

http://matt.might.net/articles/basic-unix/ 5/11

 $ pwd
 /home/matt
 $ _

On Unix, a path is a description of a file's location.

For example, /home/matt/README is a path to a file called README contained

within the home directory for the user matt.

Notice that forward slashes (/) separate components of a path.

For example:

 $ pwd
 /home/matt
 $ cd ..
 $ pwd
 /home
 $ cd matt
 $ pwd
 /home/matt
 $ _

Symbolic links

Unix filesystems make use of aliases for files known as symbolic links

(symlinks).

(There are also hard links, in which there are two true, indistingushible

references to the same file, but these are less commonly used.)

A symbolic link to a file is ordinarily treated identically to that file.

The command ln -s creates sym links.

The command ls -l can reveal where a symlink points.

For example:

 $ ls
 bar foo

 $ ln -s bar baz

 $ ls -l
 total 8
 -rw-r--r-- 1 matt staff 0 Jan 8 09:57 bar
 lrwxr-xr-x 1 matt staff 3 Jan 8 09:58 baz -> bar
 -rw-r--r-- 1 matt staff 0 Jan 8 09:57 foo

 $ _

1/9/2015 A survival guide for Unix beginners

http://matt.might.net/articles/basic-unix/ 6/11

Working with text: cat, less, emacs and vi

Suppose you want to look at a text file within the current directory.

A common way to take a glance at a text file is with the cat command:

 $ cat README.txt
 * A README file for my home directory.

 Documents contains my files.

 $ _

(The command cat is actually meant to do more powerful things than just
look at files, but that's what it's most commonly used for.)

If the file is too long to fit on a screen, use less instead of cat. (To quit less,
press q.)

You're going to spend a lot of time editing text, so you'll want to learn one
(or both) of the powerful Unix text editors: emacs and vim.

Both have a tutorial mode for teaching the essentials.

Help yourself: man up

If you don't know what a command does, use the command man command.

This will bring up the man(ual) page for command, which will document
how the command operates; it frequently provides examples of usage.

Press q to quit the man page viewer.

The apropos can help you find the command you're looking for if you don't
know it's name. It will search a database of command descriptions.

Some tools use an alternate documentation system called info

To look up documentation using info, try info topic.

For more info on info, run info info.

Search for it: grep and find

If you're looking for text within a file or a set of files, grep is the right tool.

The command grep pattern file ... will search the specified files for the

1/9/2015 A survival guide for Unix beginners

http://matt.might.net/articles/basic-unix/ 7/11

pattern.

The pattern language used throughout Unix is called regular expressions,
and there are many good introductions to these, including the man page for

grep.

To list all files under the working directory (and its subdirectories), try the

command find.

Pipes and redirection
Nearly every command in Unix makes use of a convention to have a

"standard input" (also called stdin or STDIN) and standard output (also

called stdout or STDOUT).

There is also a "standard error" (stderr or STDERR) output that is, by

convention, reserved for error messages.

Many techniques in Unix rely on redirecting these channels.

If you want to dump the standard output into a file, use command > file.

For example:

 $ pwd > pwd.txt
 $ ls
 pwd.txt
 $ cat pwd.txt
 /home/matt
 $ _

One of the most useful capabilities of Unix is the ability to redirect the

STDOUT of one command into the STDIN of another.

To do this, you'll want to use a "pipe"; for example:

 $ find . | grep READ
 ./Desktop/READINGLIST.txt
 ./README.txt
 $ _

This command found a file named READINGLIST.txt in the Desktop
subdirectory, and a file named README in the current one.

It's customary for Unix programs to read from STDIN when no input file is

specified, which is what grep is doing here.

It is also possible to send the contents of a file into the STDIN of a command

1/9/2015 A survival guide for Unix beginners

http://matt.might.net/articles/basic-unix/ 8/11

using command < file.

Permissions: chmod, chown and chgrp
In Unix, every file and directory has an owner and a group.

Every user on a Unix machine can belong to one or more groups.

Every file also has three sets of permissions: what the owner can do, what
the group can do and what anyone can do.

To see the owner, group and permissions associated with a file run ls -l.
You'll see something like:

 $ ls -l
 drwxr-xr-x 4 matt staff 136 Jun 23 2010 Documents
 drwxr-xr-x 143 matt staff 4862 Dec 30 2009 Desktop
 -rw-r--r-- 1 matt staff 4 Feb 7 11:16 README.txt
 $ _

The first column tells you about the permissions on the file.

The third and fourth tell you the owner and group respectively.

The very first character in the permissions column tells you what kind of file
it is. A - means it's a regular file. A d means it's a directory.

The next nine characters come in three classes of three characters each. The
three classes are owner permissions, group permissions and world
permissions.

Inside a permission class, r means that class can read the file; w means that
class can write the file; x means that class can execute the file.

If a file is a directory, x grants the permission to access inside the directory,
while r grants permission to list its contents.

Package managers
Modern Unixes have package managers to that download install (free)
software for you.

On a Mac, MacPorts is a popular package-management system, and
Homebrew is gaining in popularity.

On Ubuntu, apt is the standard package manager, with both a command-
line and graphical interface available.

1/9/2015 A survival guide for Unix beginners

http://matt.might.net/articles/basic-unix/ 9/11

It's a good idea to familiarize yourself with your package manager.

Remote access: ssh
If you have more than one machine, or you need remote access to another

machine, ssh is a powerful "secure shell" utility.

ssh can grant you console access on a remote machine, while safely

encrypting the session.

It is worth setting up passwordless key-based authentication using ssh-
keygen.

Using ~/.ssh/config, many options, including aliases and per-host private

keys, are available. (Try man ssh_config).

To ssh into another computer, use ssh user@address where user is the user

name of your account on the other machine, and address is host name or IP

address of the other computer.

Windows users can use PuTTY to connect to another computer over ssh.

What's next?
Wikipedia has a list of Unix utilities to peruse.

You can also move onto my guide to settling into Unix.

Good books
Unix Power Tools:

The UNIX and Linux System Administration Handbook:

1/9/2015 A survival guide for Unix beginners

http://matt.might.net/articles/basic-unix/ 10/11

Classic Shell Scripting:

Related posts
Learn Perl by experiment
A quick overview of programming with bash
A short introduction to make
SSH hacks
Standalone lexers with lex: synopsis, examples, and pitfalls
Sculpting text with regex, grep, sed and awk
Relational shell programming
Settling into Unix
Console productivity hack: Exploiting task frequency
HOWTO: Word, Excel and PowerPoint without MS Office
Tips, tricks and tools for Linux and Unix

[article index] [email me] [@mattmight] [+mattmight] [rss]

1/9/2015 A survival guide for Unix beginners

http://matt.might.net/articles/basic-unix/ 11/11

Latest: Productivity tips for academics
Next: HOWTO: Get a great letter of recommendation
Prev: Writing CEK-style interpreters in Haskell
Rand: Higher-order list operations

matt.might.net is powered by linode | legal information

