
1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 1/13

Latest: Productivity tips for academics
Next: Relational shell programming
Prev: 12 resolutions for programmers
Rand: An implementation of RSA in Scheme

Settling into Unix
[article index] [email me] [@mattmight] [+mattmight] [rss]

Unix plays a supporting role in all of the classes I teach, but it is essential in
my Scripting Language Design and Implementation course.

Unix is an operating ecosystem for executing and composing scripts.

It ranks high on my list of what every CS major should know.

Unfortunately, students no longer arrive familiar with Unix-style
computing, and most are not willing to learn it on their own.

Some even see it as a baroque regression.

I wrote a brief survival guide to Unix to help students, and this post is a
follow-up on taking the next steps: choosing, configuring and customizing
your shell, your text editor and your environment.

Please feel free to forward this to anyone that needs a summary of the basic
options and pointers to advanced ones (like programmable tab completion).

Future posts in this series will cover software development under Unix; shell
scripting; choosing and customizing a window manager; and recipes and
strategies for Unix system administration.

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 2/13

Interactive shells
Your interactive shell determines the command-line dialect you will use to

interact with your machine.

There are two dominant families of interactive shells: Bourne-shell-

compatible and C-shell-compatible.

By default, you've probably been provided with bash, the most popular of

the Bourne-shell compatibles.

You can use echo $SHELL to figure out which shell you're using:

 $ echo $SHELL

 /bin/bash

 $ _

Tip: The default Bourne-shell-compatible prompts end with $ while the

default C-shell-compatible prompts end with % or >. (zsh is an exception to

this.) Root (super-user) prompts often end with # by default. Of course, this

behavior is configurable.

It's a near certainty that a bash interpreter will be available on a Unix

system; bash has become the JVM of the Unix world.

For interactive purposes, Bourne-shell-compatible and C-shell-compatible

are roughly the same, but they differ substantially for scripting.

Many users (including myself) prefer the Bourne-shell-compatible zsh for

interactive purposes.

The modern version of the C shell is tcsh.

You can change your default shell with the command chsh:

 $ chsh -s /bin/zsh

 Password for user name:

 $ _

You can also switch to another shell by typing name-of-shell:

 $ tcsh

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 3/13

 > exit

 $ _

Tip: Hitting controld (which sends "end-of-file") in a shell will often
terminate it as well.

Glob matching

Shells support glob matching on filenames.

A glob pattern uses the multicharacter wildcard * to match any number of
characters (including no characters). For example, foo* would match foo,
foobar or foobaz. but not fo

A glob pattern uses the one-character wildcard ? to match exactly one
unknown character. For example, ?at would match cat and hat, but not
ccat.

A glob pattern uses set pattern [characters] to match any of the specificied
characters. For example, [cfh]at would match cat, fat and hat, but not mat.

Shells expand glob patterns into lists of filenames.

For example, to list all of the files in the current directory starting with f or a
and ending with z, you can use [fa]*z:

 $ ls
 axb axyz fsz baz

 $ echo [fa]*z
 axyz fsz

 $ _

On most systems, the shells live in /bin. You can use ls with a glob match to
see which shells are available:

 $ ls /bin/*sh
 /bin/bash /bin/csh /bin/ksh /bin/sh /bin/tcsh
 /bin/zsh

 $ _

There are many shell-specific extensions to glob-matching.

For instance, in zsh you can qualify a glob match to restrict it. For example,
the qualifier (@) would list only the symbol links in a directory:

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 4/13

 $ echo *
 file1 file2 link-to-file1

 $ echo *(@)
 link-to-file1

 $ _

Tab completion

Most shells support tab completion.

When you have partially typed a command, filename or shell variable, press
tab to have it autocomplete the remainder.

Where there is more than one completion, the shell will list the possibilities.

In some interactive shells, like bash and zsh, tab completion behavior is
programmable.

Shell scripting
Shell languages are actually full programming languages.

Shell scripts are programs written in the syntax of an interactive shell.

Shell scripts are useful for automating repetitive or complex tasks.

Common applications of shell scripts include:

data backup and restoration;
cleaning up a directory;
invoking a program with complex options;
running commands on remote systems; and
analyzing files.

You might also use shell scripts for one-time but complex tasks like finding
and condensing all the duplicate mp3s spread across your hard drives.

For writing shell scripts, one can decide the shell on a per-script basis.

The top line of the file will contain the path to the shell, preceded by #!.

That is, you could use zsh as your interactive shell, but have shell scripts
written in a mixture of tcsh and bash.

In fact, some shells, like Scheme shell are meant to be used solely as

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 5/13

scripting shells rather than interactive shells.

To create and run a shell script:

1. create a file with #!/path/to/shell at the top;
2. chmod it executable, i.e, chmod u+x filename;
3. and then run it with ./filename.

For example, the following creates and executes a simple bash shell script:

 $ cat > mycommand

 #!/bin/bash

 echo Hello world.

 control-d

 $ chmod u+x mycommand

 $./mycommand

 Hello world.

 $ _

Text editors
In the Unix tradition, everything is stored as text.

Manipulating text efficiently is what text editors in the Unix tradition do.

Most Unix users use either emacs (or xemacs) or vim.

Some (like myself) use both.

For new users, the editor pico is popular, since it displays its short-cut keys
(like controlx for exit) at the bottom.

Unix users should master emacs, vim or both.

It will take about thirty minutes to complete the tutorial for either one.

Try each one out.

Emacs

Emacs is the kitchen-sink approach to text editors.

Emacs is really a Lisp interpreter inside of which a text editor and many
other applications live.

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 6/13

For almost any task, there exists an emacs plug-in to do it.

Complex editing tasks in emacs are invoked through key combinations.

New users find some of these combinations complex at first. (Even exiting
the program is controlx controlc.)

Emacs is heavily customizable through scripts written in emacs lisp, a
dynamically scoped variant of the Lisp programming language.

The per-user configuration file for emacs is ~/.emacs.

To take the emacs tutorial, run emacs and press controlh and then hit t.

Vim

Vim (an improved version of the original vi editor) takes a different
approach to editing text than most editors: typical user behavior is to toggle
between an insertion mode and a command ("normal") mode.

There is also a "visual" mode, a "command-line" mode and an "ex" mode.

In insertion mode, you are directly editing text.

In command mode, every key press might perform an editing operation on
the file. Complex changes take only a few keystrokes.

To switch from command mode to insertion mode, press i.

To switch from insertion mode to command mode, press escape (or control
c).

To quit without saving, hit :q! and enter.

Vim is customizable through vimscript.

The per-user configuration file for vim is ~/.vimrc.

To take the vim tutorial, run vim and then press :help tutor, or run
vimtutor directly.

Dot files
Configuration files for individual users live in their home directory, and by
convention, have a . in front of them.

By default, these files are not shown with commands like ls.

To see the hidden dot files in the home directory, use ls -a ~:

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 7/13

 $ ls -a ~
 .
 ..
 .bash_history
 .bash_profile
 .htaccess
 .emacs
 .ssh
 .vimrc
 .zprofile
 docs
 repos

 $ _

Modifying these files customizes the behavior of programs and the
environment.

The site dotfiles.org is a collection of user-submitted configuration files. It's
a great way to see how other people customize their Unix environment.

Customizing the shell

To customize bash, add commands to run every time you login to a bash
shell in .bash_profile.

To customize zsh, the equivalent file is .zprofile.

For tcsh, it's .tcshrc.

It's common to place alias directives in these files.

An alias is an abbrevation for a command.

For instance, I have an alias set in my .zprofile for each account to which I
frequently ssh:

 alias utah='ssh might@shell.cs.utah.edu'
 alias might='ssh matt@might.net'

The alias syntax is slightly different for C-shell-compatible shells:

 alias utah ssh might@shell.cs.utah.edu
 alias might ssh matt@might.net

For example, if I want to check the amount of free disk space on might.net, I
can do it quickly with the command might df.

Environment variables
Much of the Unix environment is customized through environment

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 8/13

variables. Many standard environment variables are set in the shell
initialization files (.bash_profile, .zprofile, .tcshrc).

When writing shell scripts, environment variables also play the same roll as
regular variables in ordinary programming languages.

To view the current values of environment variables, run the command env.

You can also access the contents of an environment variable in a shell by
prefixing it with $:

 $ echo $PATH

 /usr/bin:/bin:/usr/sbin:/sbin

 $ _

In Bourne-compatible shells, the assignment operator = sets environment
variables:

 $ foo=3

 $ echo $foo

 3

 $ _

In C-shell-compatible shells, the set command sets environment variables:

 > set foo=3

 > echo $foo

 3

 > _

Exported variables

When a one program invokes another program, the child program receives
all of the exported environment variables of the parent.

By default, environment variables are not exported.

For example, in the following, the child bash process cannot see $foo from
the parent:

 $ foo=3

 $ echo $foo

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 9/13

 3

 $ bash

 $ echo $foo

 $ exit

 $ echo $foo

 3

 $ _

To export a variable under Bourne-compatible shells, use export:

 $ export foo=3

 $ echo $foo

 3

 $ bash

 $ echo $foo

 3

 $ exit

 $ echo $foo

 3

 $ _

To export a variable on C-compatible shells, use setenv:

 > setenv foo 3

 > echo $foo

 3

 > tcsh

 > echo $foo

 3

 > exit

 > echo $foo

 3

 > _

Command path

The PATH variable is a colon-delimited list of directories to search for

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 10/13

commands.

For instance, if PATH is /bin:/usr/bin:/sbin, then if the user types the

command name, the shell will check for an executable file named /bin/name,

then /usr/bin/name, then /sbin/name when completing the request.

Users often like to add custom scripts to their command path.

One way to accomplish this is to create a user-specific command directory,

~/bin, store scripts here, and then add it to the PATH variable.

Usually, the PATH variable is set and exported by the shell initialization file.

Prompts

To customize the prompt, the PS1 variable controls the look and feel under

Bourne-compatible shells, while the prompt variables does the same for C-

shell-compatible shells.

There are many shell-specific escapes one can add to make the prompt's

behavior dynamic:

bash prompt guide

zsh and csh customization

Every advanced Unix user has invested in prompt customization well past

the point of diminishing returns.

It is a rite of passage.

My fancy zsh prompt looks like a smurf impaled on a Christmas tree.

It displays more information than I've ever needed or used.

But, damn, it looks cool.

Colors

Enabling color is shell- and even program-specific, but it helps a lot.

To control colors in ls set the LS_COLORS variable. You may need to then alias

ls to ls --color or ls -G depending on your Unix flavor.

To enable color in grep, alias grep to grep --color, and then set GREP_COLOR.

To control colors in the prompt, there are shell-specific methods best

learned by Google, trial and error.

Other common shell variables

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 11/13

Most shells have the following set:

variable description

DISPLAY tells X11 on which display to open windows
EDITOR default text editor; usually emacs or vim
HOME path to user's home directory; same as ~
PAGER default page-scroller to use; usually less
PWD current directory; same as output of pwd
SHELL path to the current shell
TERM current terminal type
USER account name of current user

What's next?
After settling into Unix, you ought to investigate software development
under Unix; customizing a window manager for X; and the art of Unix
systems administration.

Good books
The Linux Programming Interface:

Unix Power Tools:

The UNIX and Linux System Administration Handbook:

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 12/13

Classic Shell Scripting:

Related posts
Learn Perl by experiment
A quick overview of programming with bash
A short introduction to make
SSH hacks
Standalone lexers with lex: synopsis, examples, and pitfalls
Sculpting text with regex, grep, sed and awk
Relational shell programming
A survival guide for Unix beginners
Console productivity hack: Exploiting task frequency
HOWTO: Word, Excel and PowerPoint without MS Office
Tips, tricks and tools for Linux and Unix

[article index] [email me] [@mattmight] [+mattmight] [rss]

The C Programming …
$67.00 $51.80

Modern C++ Design: …
$64.99 $49.56

1/9/2015 Settling into Unix

http://matt.might.net/articles/settling-into-unix/ 13/13

Latest: Productivity tips for academics
Next: Relational shell programming
Prev: 12 resolutions for programmers
Rand: An implementation of RSA in Scheme

matt.might.net is powered by linode.

