
1/9/2015 A tmux Primer

https://danielmiessler.com/study/tmux/ 1/10

Home

Blog

Study

Writing

Projects

Connect

About

A tmux Primer
Home » Study » A tmux Primer

Intro

Why Tmux?

What About Screen?

Basics

The tmux Shortcut

Invocation

Show Sessions

Create a New Session

Attach to an Existing Session

Detaching from an Existing Session

Configuration

Advanced

Windows and Panes

Recommendations

Shortcut Reference

1/9/2015 A tmux Primer

https://danielmiessler.com/study/tmux/ 2/10

There are 4,257 tutorials on tmux. That’s a rough number that I just made up. This one is designed to take you from “wtf
tmux” to “omg tmux” with extreme haste.

Let’s get started.

Why Tmux
tmux is useful to people in different ways. To me, it’s most useful as a way to maintain persistent working states on remote
servers—allowing you to detach and re-attach at will.

You could, for example, have a session on your server for hacking on a node REST API (my current project), and call it
“nodeapi”. And let us say that you are compiling something for it that will take two hours (work with me), but you’re
currently working at a coffee shop and you have to leave. tmux lets you simply detach from that session and come back to it
later.

That’s handy.

Others like to focus on how you can use tmux to have multiple panes within multiple windows within multiple tabs within
multiple sessions. I don’t do that. I like fewer of those—as few as possible, actually—and this guide will be focused on a
simple persistent-remote-sessions model.

A remote computing lifestyle

Mobility is a central theme for tmux users. Many developers do all of their work from the server, and simply connect in from
$wherever to do it. tmux (and similar tools) allow you to work from a coffee shop in SF, start something building on the
server, disconnect to take a flight, and then pick up that same task on the ground in NYC when you land.

A related advantage to this mobile approach is the fact that your client machine is not too terribly important. You can upgrade
your laptop, clone a repo with your vim/tmux dotfiles in it, and you’re back to your optimum computing environment in
minutes rather than days.

Anyway, those are some reasons that people love tmux, but you don’t have to make this lifestyle change in order to see its
benefits.

What about screen?

Good question. tmux is a lot like screen, only better. The short answer for how it’s better is that tmux is better designed to
perform the same functions. Screen gets you there (kind of) but does so precariously.

Here are a few of the key advantages of tmux over screen:

Screen is a largely dead project, and its code has significant issues
Tmux is an active project with an active codebase
Tmux is built to be truly client/server; screen emulates this behavior
Tmux supports both emacs and vim shortcuts
Tmux supports auto-renaming windows
Tmux is highly scriptable
Window splitting is more advanced in tmux

Enough about that. Use tmux.

Basics
Now is a good time to mention that there is a universal tmux shortcut that lets you quickly perform many tasks.

The tmux shortcut

By default, tmux uses Ctrl-b as its shortcut activation chord, which enables you perform a number of functions quickly. Here
are a few of the basics:

1/9/2015 A tmux Primer

https://danielmiessler.com/study/tmux/ 3/10

First you hit:

$ Ctrl-b

…followed by a number of options that we’ll talk about below. But get ready to use that Ctrl-b combo. Also consider

remapping CAPSLOCK to CONTROL within your operating system; it makes the pinky walk for Ctrl-b quite nice.

Invocation

Right then. Let’s start by running tmux. You want to do this from the system that you want to detach and re-attach to—which

for me is usually a remote server.

$ tmux

Simple enough. You now have a tmux session open that you can disconnect from and come back to later.

Show Sessions

Since the idea of tmux is having multiple sessions open, and being able to disconnect and reconnect to them as desired, we

need to be able to see them quickly.

Via shortcut (by default Ctrl-b)

$ Ctrl-b s

Via tmux command

$ tmux ls

Either way you get the same thing:

0: 1 windows (created Thu Nov 28 06:12:52 2013) [80x24] (attached)

Create a new session

Now we’re going to create a new session. You can do this with just the new command, or by providing an argument to it that

serves as the session name. I recommend providing a session name, since organization is rather the point of tmux.

$ tmux new -s session-name

Without naming the new session (not recommended)

$ tmux new

Attaching to an existing session

Since we’re going to be creating sessions with names, and we may have more than one, we want to be able to attach to them

properly. There are a couple ways of doing this.

You can simply type tmux a and it’ll connect you to the first available session.

$ tmux a

Or you can attach to a specific session by providing an argument.

$ tmux a -t session-name

Detaching from a session

You can detach from an existing session (so you can come back to it later) by sending the detach command.

1/9/2015 A tmux Primer

https://danielmiessler.com/study/tmux/ 4/10

$ tmux detach

Or you can use the shortcut.

$ Ctrl-b d

Killing a session

There are times when you’ll want to destroy a session. This can be done using the following syntax, which is much the same

as attachment:

$ tmux kill-session -t session-name

[NOTE: You can kill windows the same way, but using kill-window instead. You can also kill tmux altogether with

killall tmux.]

Configuration

As with most things in tech, you can get pretty silly with your tmux config. The common things to tinker with are:

The primary tmux shortcut

Your status bar

Your various keyboard shortcuts

I went pretty Spartan with mine.

Set a Ctrl-b shortcut for reloading your tmux config
bind r source-file ~/.tmux.conf

Rename your terminals
set -g set-titles on
set -g set-titles-string '#(whoami)::#h::#(curl ipecho.net/plain;echo)'

Status bar customization
set -g status-utf8 on
set -g status-bg black
set -g status-fg white
set -g status-interval 5
set -g status-left-length 90
set -g status-right-length 60
set -g status-left "#[fg=Green]#(whoami)#[fg=white]::#[fg=blue] \

(hostname - s)#[fg=white]::##[fg=yellow]#(curl ipecho.net/plain;echo)"

set -g status-justify left
set -g status-right '#[fg=Cyan]#S #[fg=white]%a %d %b %R'

One thing worth noting here is that I use ipecho.net to get my current WAN IP4 WAN address instead of icanhazip as most

other tutorials have. It’s just faster and less prone to error, from my experience.

[My current, updated configuration can be found here if you’re interested.]

Advanced

1/9/2015 A tmux Primer

https://danielmiessler.com/study/tmux/ 5/10

That covers how I usually use tmux, but I do often make use of some of the more powerful features.

Windows and Panes

One of these features is the ability to break your session into more discreet components, called windows and panes. These are

good for organizing multiple varied activities in a logical way.

Let’s look at how they relate to each other.

Nesting

tmux sessions have windows, and windows have panes. Below you can see how how I conceptualize them—although if

anyone has a more authoritative or useful hierarchy I’ll happily embrace it.

1/9/2015 A tmux Primer

https://danielmiessler.com/study/tmux/ 6/10

Sessions are for an overall theme, such as work, or experimentation, or sysadmin.

Windows are for projects within that theme. So perhaps within your experimentation session you have a window titled

noderestapi, and one titled lua sample.
Panes are for views within your current project. So within your sysadmin session, which has a logs window, you may

have a few panes for access logs, error logs, and system logs.

It’s also possible to create panes within a session without first creating a separate window. I do this sometimes. Hopefully it

isn’t as horrible as it sounds right after reading about nesting. As I said in the beginning, I incline towards simplicity with my

use of tmux.

Navigating with panes

There’s a default way to navigate between panes, but I don’t know what it is. I’m a vim guy, so I navigate within my panes

using the h, j, k, and l keys like so:

Remap window navigation to vim
unbind-key j
bind-key j select-pane -D
unbind-key k
bind-key k select-pane -U
unbind-key h
bind-key h select-pane -L
unbind-key l
bind-key l select-pane -R

Recommendations
A few thoughts that may help you in your tmux travels:

1. Consider using as few sessions and windows as possible. Humans aren’t as good at multitasking as we think we are, and

while it feels powerful to have 47 panes open it’s usually not as functional as you’d imagine.

2. When you do use windows and panes, take the time to name them. They are indeed useful, but switching between

sessions and windows is supremely annoying when they’re all labeled 0, 1, and 2.

3. Start with a basic config and get used to it before you get silly. I’ve seen multiple people spend hours configuring vim

or tmux only to confuse themselves and abandon the project altogether. Start simple.

Shortcut Reference
Now a Ctrl-b options reference:

Basics

? get help

Session management

s list sessions

$ rename the current session

d detach from the current session

Windows

c create a new window

, rename the current window

w list windows

% split horizontally

" split vertically

n change to the next window

p change to the previous window

1/9/2015 A tmux Primer

https://danielmiessler.com/study/tmux/ 7/10

0 to 9 select windows 0 through 9

Panes

% create a horizontal pane
" create a vertical pane
h move to the left pane. *
j move to the pane below *
l move to the right pane *
k move to the pane above *
k move to the pane above *
q show pane numbers
o toggle between panes
} swap with next pane
{ swap with previous pane
! break the pane out of the window
x kill the current pane

Miscellaneous

t show the time in current pane

I hope this has been helpful.

[If you liked this, check out my other technical primers here.]

Resources

1. The man page.
2. A thousand other great tutorials.

Related…

9 Enhancements to Shell and Vim Productivity
From iTerm2 to Terminal.app
Port Mirroring on a Cisco 3550 Switch
Annoying Things in OS X

Enter your email address for weekly updates…
Subscribe

Have an opinion on this?

If so, I'd love to hear from you on Twitter, via email, or in the comments below.

22 Comments danielmiessler.com Login

Sort by Best Share ⤤

Join the discussion…

Favorite ★

2

Share

17

Share

164

Share

18

Share Share Share

