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These circular disk antennas, each
25 m in diameter, are pointed to
receive radio waves from out in
space. Radio waves are electromag
netic (EM) waves that have frequen
cies from a few hundred Hz to
about 1OOMHz. These antennas are
connected together electronically to
achieve better detail, and are a part
of the Very Large Array in New
Mexico searching the heavens for
information about the Cosmos.

Maxwell predicted the existence of
EM waves from his famous equations,
which are a magnificent summary of
electromagnetism.

CHAPTER22
Electromagnetic Waves

The culmination of electromagnetic theory in the nineteenth century was
the prediction, and the experimental verification, that waves of electro
magnetic fields could travel through space. This achievement opened a

whole new world of communication: first the wireless telegraph, then radio and
television, and more recently cell phones and remote-control devices. And it
yielded the spectacular prediction that light is an electromagnetic wave.

The theoretical prediction of electromagnetic waves was the work of the
Scottish physicist James Clerk Maxwell (1831—1879; Fig. 22—1), who unified, in
one magnificent theory, all the phenomena of electricity and magnetism.

FIGURE 22—1 James Clerk Maxwell.
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Changing Electric Fields Produce
Magnetic Fields; Maxwell’s Equations

The development of electromagnetic theory in the early part of the nineteenth
century by Oersted, Ampere, and others was not actually done in terms of elec
tric and magnetic fields. The idea of the field was introduced somewhat later by
Faraday, and was not generally used until Maxwell showed that all electric and
magnetic phenomena could be described using only four equations involving
electric and magnetic fields. These equations, known as Maxwell’s equations, are the
basic equations for all electromagnetism. They are fundamental in the same sense
that Newton’s three laws of motion and the law of universal gravitation are for
mechanics. In a sense, they are even more fundamental, because they are consistent
with the theory of relativity (Chapter 26), whereas Newton’s laws are not. Because
all of electromagnetism is contained in this set of four equations, Maxwell’s equa
tions are considered one of the great triumphs of the human intellect.

Although we will not present Maxwell’s equations in mathematical form
since they involve calculus, we will summarize them here in words. They are:

(1) a generalized form of Coulomb’s law known as Gauss’s law (Section 16—10)
that relates electric field to its source, electric charge;

(2) a similar law for the magnetic field, except that magnetic field lines are always
continuous—they do not begin or end (as electric field lines do, on charges);

(3) an electric field is produced by a changing magnetic field (Faraday’s law);

(4) a magnetic field is produced by an electric current (Ampere’s law), or by a
changing electric field.

Law (3) is Faraday’s law (see Chapter 21, especially Section 21—4). The first part
of law (4), that a magnetic field is produced by an electric current, was discovered by
Oersted, and the mathematical relation is given by Ampere’s law (Section 20—8).
But the second part of law (4) is an entirely new aspect predicted by Maxwell.
Maxwell argued that if a changing magnetic field produces an electric field, as

Changing E given by Faraday’s law, then the reverse might be true as well: a changing electric
produces B field will produce a magnetic field. This was an hypothesis by Maxwell, based on

the idea of symmetry in nature. Indeed, the size of the effect in most cases is so
small that Maxwell recognized;it would be difficult to detect it experimentally.

* Maxwell’s Fourth Equation (Ampere’s Law Extended)
To back up the idea that a changing electric field might produce a magnetic
field, we use an indirect argument that goes something like this. According to
Ampere’s law (Section 20—8), EB11 il = I. That is, divide any closed path
you choose into short segments z1, multiply each segment by the parallel
component of the magnetic field B at that segment, and then sum all these
products over the complete closed path. That sum will then equal p times the

total current I that passes through a surface bounded by the path. When we

applied Ampere’s law to the field around a straight wire (Section 20—8), we

imagined the current as passing through the circular area enclosed by our

circular loop. That area is the flat surface 1 shown in Fig. 22—2. However, we

could just as well use the sack-shaped surface 2 in Fig. 22—2 as the surface for

Ampere’s law because the same current I passes through it.

FIGURE 22—2 Ampere’s law
applied to two different surfaces
bounded by the same closed path.

Now consider the closed path for the situation of Fig. 22—3, where a capacitor
is being discharged. Ampere’s law works for surface 1 (current I passes through
surface 1), but it does not work for surface 2 because no current passes
through surface 2. There is a magnetic field around the wire, so the left side of
Ampere’s law is not zero around the circular closed path; yet no current flows
through surface 2, so the right side is zero for surface 2. We seem to have a
contradiction of Ampere’s law. There is a magnetic field present in Fig. 22—3,
however, only if charge is flowing to or away from the capacitor plates. The
changing charge on the plates means that the electric field between the plates is
changing in time. Maxwell resolved the problem of no current through surface 2
in Fig. 22—3 by proposing that the changing electric field between the plates is
equivalent to an electric current. He called it a displacement current, ‘D An
ordinary current I is then called a “conduction current,” and Ampere’s law, as
generalized by Maxwell, becomes

Ampere’s law will now apply also for surface 2 in Fig. 22—3, where ‘D refers to
the changing electric field.

By combining Eq. 17—7 for the charge on a capacitor, Q = CV,
with Eq. 17—4a, V Ed, and Eq. 17—8, C = €0A/d, we can write
Q = CV = (€0A/d)(Ed) = €0AE. Then the current I becomes

where 1E = EA is the electric flux, defined in analogy to magnetic flux
(Section 21—2). Then, Ampere’s law becomes

This equation embodies Maxwell’s idea that a magnetic field can be caused not
only by a normal electric current, but also by a changing electric field or
changing electric flux.

Production of Electromagnetic Waves
According to Maxwell, a magnetic field wifi be produced in empty space if there
is a changing electric field. From this, Maxwell derived another startling conclu
sion. If a changing magnetic field produces an electric field, that electric field is
itself changing. This changing electric field will, in turn, produce a magnetic field,
which will be changing, and so it too will produce a changing electric field; and so
on. When Maxwell worked with his equations, he found that the net result of
these interacting changing fields was a wave of electric and magnetic fields that
can propagate (travel) through space! We now examine, in a simplified way,
how such electromagnetic waves can be produced.

Consider two conducting rods that will serve as an “antenna” (Fig. 22—4a).
Suppose that these two rods are connected by a switch to the opposite terminals
of a battery. As soon as the switch is closed, the upper rod quickly becomes
positively charged and the lower one negatively charged. Electric field lines are
formed as indicated by the lines in Fig. 22—4b. While the charges are flowing, a
current exists whose direction is indicated by the black arrows. A magnetic field
is therefore produced near the antenna. The magnetic field lines encircle the
rod-like antenna and therefore, in Fig. 22—4, B points into the page (®) on
the right and out of the page (0) on the left. Now we ask, how far out do
these electric and magnetic fields extend? lif the static case, the fields extend
outward indefinitely far. However, when the switch in Fig. 22—4 is closed, the
fields quickly appear nearby, but it takes time for them to reach distant points.
Both electric and magnetic fields store energy, and this energy cannot be trans
ferred to distant points at infinite speed.

Maxwell’s equations

1

2B11 M = /.Lo(I + ID).

FIGURE 22—3 A capacitor
discharging. No conduction current
passes through surface 2. An extra
term is needed in Ampere’s law.
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—

—

Ampere’s lawB11 M = i..t0I + .L0E0 (22—1) (generalized)

Closed
path

Surface 2

1

FIGURE 22—4 Fields produced by
charge flowing into conductors. It
takes time for the E and B fields to
travel outward to distant points.
The fields are shown to the right of
the antenna, but they move out in
all directions, symmetrically about
the (vertical) antenna.

How EM waves
are produced

(a)

B is
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(b)

FIGURE 22—5 Sequence showing
electric and magnetic fields that
spread outward from oscillating
charges on two conductors (the
antenna) connected to an ac source
(see the text).

Now we look at the situation of Fig. 22—5, where our antenna is connected to

an ac generator. In Fig. 22—5a, the connection has just been completed. Charge

starts building up, and fields form just as in Fig. 22—4b. The + and — signs in

Fig. 22—5a indicate the net charge on each rod. The black arrows indicate the direction

of the current. The electric field is represented by red lines in the plane of the page;

and the magnetic field, according to the right-hand rule, is into (0) or out of (0)

the page. In Fig. 22—Sb, the voltage of the ac generator has reversed in direc

tion; the current is reversed and the new magnetic field is in the opposite direction.

Because the new fields have changed direction, the old lines fold back to connect up

to some of the new lines and form closed loops as shown.t The old fields, however,

don’t suddenly disappear; they are on their way to distant points. Indeed, because a

changing magnetic field produces an electric field, and a changing electric field

produces a magnetic field, this combination of changing electric and magnetic fields

moving outward is self-supporting, no longer depending on the antenna charges

The fields not far from the antenna, referred to as the near field, become

quite complicated, but we are not so interested in them. We are mainly inter

ested in the fields far from the antenna (they are generally what we detect),

which we refer to as the radiation field. The electric field lines form loops, as

shown in Fig. 22—6, and continue moving outward. The magnetic field lines also

form closed loops, but are not shown since they are perpendicular to the page.

Although the lines are shown only on the right of the source, fields also travel in

other directions. The field strengths are greatest in directions perpendicular to

the oscillating charges; and they drop to zero along the direction of oscillation—

above and below the antenna in Fig. 22—6.

FIGURE 22—6 (a) The radiation fields (far from the antenna) produced by a

sinusoidal signal on the antenna. The red closed loops represent electric field lines.

The magnetic field lines, perpendicular to the page and represented by blue ® and 0,

also form closed loops. (b) Very far from the antenna, the wave fronts (field lines)

are essentially flat over a fairly large area, and are referred to as plane waves.

The magnitudes of both E and 1% in the radiation field are found to

decrease with distance as 1/r. (Compare this to the static electric field given by

Coulomb’s law where E decreases as 1/r2.) The energy carried by the electro

magnetic wave is proportional (as for any wave, Chapter 11) to the square of

the amplitude, E2 or B2, as will be discussed further in Section 22—7, so the

intensity of the wave decreases as hr2.

Several things about the radiation field can be noted from Fig. 22—6. First, the

electric and magnetic fields at any point are perpendicular to each other, and to the

direction of wave travel. Second, we can see that the fields alternate in direction

(B is into the page at some points and out of the page at others; E points up at

some points and down at others). Thus, the field strengths vary from a maxirnUfll

in one direction, to zero, to a maximum in the other direction. The electric and

magnetic fields are “in phase”: that is, they each are zero at the same points

and reach their maxima at the same points in space. Finally, very far from the

antenna (Fig. 22—6b) the field lines are quite flat over a reasonably large area.

and the waves are referred to as plane waves.

twe are considering waves traveling through empty space. There are no charges for lines of E to

start or stop on, so they form closed loops. Magnetic field lines always form closed ioops.

If the source voltage varies sinusoidally, then the electric and magnetic field
strengths in the radiation field will also vary sinusoidally. The sinusoidal char
acter of the waves is shown in Fig. 22—7, which displays the field strengths as a
function of position along the direction of wave travel. Notice that B and E are
perpendicular to each other and to the direction of wave travel.

We call these waves electromagnetic (EM) waves. They are transverse
waves because the amplitude is perpendicular to the direction of wave travel.
However, EM waves are always waves of fields, not of matter (like waves on
water or a rope). Because they are fields, EM waves can propagate in empty
space.

As we have seen, EM waves are produced by electric charges that are oscil
lating, and hence are undergoing acceleration. In fact, we can say in general that

accelerating electric charges give rise to electromagnetic waves.

Maxwell derived a formula for the speed of EM waves:
E

(22—2)

where c is the special symbol for the speed of electromagnetic waves in empty
space, and E and B are the magnitudes of electric and magnetic fields at the
same point in space. More specifically, it was easily shown also that

c=.

When Maxwell put in the values for € and p, he found
_1_ 1

— —
x 1Ol2C2/N.m2)(4 X 107N.s2/C2)

= 3.00 x 108 m/s,
which is equal to the measured speed of light in vacuum.

Light as an Electromagnetic Wave and the
EIectromagnecspecurn

Maxwell’s prediction that EM waves should exist was startling. Equally remark
able was the speed at which EM waves were predicted to travel—
3.00 X 108 m/s, the same as the measured speed of light.

Light had been shown some 60 years before Maxwell’s work to behave like
a Wave (we’ll discussti,js in Chapter 24). But nobody knew what kind of wave it
Was, What is it that is oscillating in a light wave? Maxwell, on the basis of the
Calculated speed of EM waves, argued that light must be an electromagnetic
Wave. This idea soon came to be generally accepted by scientists, but not fully
Until after EM waves were experimentally detected. EM waves were first gener
ated and detected experimentally by Heinrich Hertz (1857—1894) in 1887, eight
years after Maxwell’s death. Hertz used a spark-gap apparatus in which charge
Was made to rush back and forth for a short time, generating waves whose

FIGURE 22—7 Electric and
magnetic field strengths in an
electromagnetic wave. E and B are
at right angles to each other. The
entire pattern moves ma direction
perpendicular to both E and B.

EM waves are produced by
accelerating electric charges

c is symbol for
speed of light

‘1

It

(a)

E

+

Direction
of motion
of wave

—

Direction (Dl
0 I H®

wave travel

(b)

1

EM wave

(22—3) Speed of EM waves
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frequency was about iO Hz. He detected them some distance away using a loop

of wire in which an emf was produced when a changing magnetic field passed

through. These waves were later shown to travel at the speed of light,

3.00 x 108 m/s, and to exhibit all the characteristics of light such as reflection,

refraction, and interference. The only difference was that they were not visible.

Hertz’s experiment was a strong confirmation of Maxwell’s theory.

The wavelengths of visible light were measured in the first decade of the

nineteenth century, long before anyone imagined that light was an electromag

netic wave. The wavelengths were found to lie between 4.0 X m and

7.5 X iO m; or 400 nm to 750 nm (i nm = 1O m). The frequencies of visible

light can be found using Eq. 11—12, which we rewrite here:

where f and A are the frequency and wavelength, respectively, of the wave.

Here, c is the speed of light, 3.00 x 108 m/s; it gets the special symbol c because

of its universality for all EM waves in free space. Equation 22—4 tells us that the

frequencies of visible light are between 4.0 X iO’ Hz and 7.5 x iO’ FJz

(Recall that 1 Hz = 1 cycle per second = 1 s1.)

But visible light is only one kind of EM wave. As we have seen, Hertz

produced EM waves of much lower frequency, about iO Hz. These are now called

radio waves, since frequencies in this range are used to transmit radio and TV

signals. Electromagnetic waves, or EM radiation as we sometimes call it, have been

produced or detected over a wide range of frequencies. They are usually catego

rized as shown in Fig. 22—8, which is known as the electromagnetic spectrum.

I I I I
I

Infrared UftravioIe( Gamma rays — —

Radio waves Microwaves X-rays -

(e.g.. radar)

60 Hz p.j Cellular Satellite

(ac cunnt)
AM TV TV phooe TV

$ radio

I————— I •i— I —r————1 I

1012 ;2v’ là’s

A=7.5x10-7m 4.0x107m

FIGURE 22—8
Electromagnetic spectrum.

f4x10’4F1z
Visible light

7.5xlO14Hz

Radio waves and microwaves can be produced in the laboratory using elec

tronic equipment (Fig. 22—5). Higher-frequency waves are very difficult to produce

electronically. These and other types of EM waves are produced in natural processes

as emission from atoms, molecules, and nuclei (more on this later). EM waves can be

produced by the acceleration of electrons or other charged particles, such as elec

trons accelerating in the antenna of Fig. 22—5. Another example is X-rays, which are

produced (Chapters 25 and 28) when fast-moving electrons are rapidly decelerated

upon striking a metal target. Even the visible light emitted by an ordinary incandes

cent bulb is due to electrons undergoing accelera’ion within the hot filament.

We will meet various types of EM waves later. However, it is worth mentioning

here that infrared (IR) radiation (EM waves whose frequency is just less than that

of visible light) is mainly responsible for the heating effect of the Sun. The Sun

emits not only visible light but substantial amounts of JR and UV (ultraviolet) as

well. The molecules of our skin tend to “resonate” at infrared frequencies, so it IS

these that are preferentially absorbed and thus warm us. We humans experi

EM waves differently depending on their wavelengths: Our eyes detect wavelens

between about 4 x 10 m and 7.5 X m (visible light), whereas our skin detects

longer wavelengths (IR). Many EM wavelengths we don’t detect directly at all.

Light and other electromagnetic waves travel at a speed of 3 X 10 rn/s.
Compare this to Sound, which travels (see Chapter 12) at a speed of about
300 rn/S in air, a million times slower; or to typical freeway speeds of a
car, 3Om/s (lOOkm/h, or 6Omi/h), 10 million times slower than light.
EM waves differ from sound waves in aiother big way: Sound waves travel in
a medium such as air, and involve motion of air molecules; EM waves do not
involve any material_only fields, and they can travel in empty space.

XAMPLE 22-1 Wavelengths of EM waves. Calculate the wavelength
(a) of a 60-Hz EM wave, (b) of a93.3-MHz FM radio wave, and (c) of a beam
of visible red light from a laser at frequency 4.74 X i0 Hz.

APPROACH All of these waves are electromagnetic waves, so their speed is
c 3.00 X 108 rn/s. We solve for A in Eq. 22—4: A c/f.
SOLUTION (a)

or 5000 km. 60Hz is the frequency of ac current in the United States, and, as
we see here, one wavelength stretches all the way across the continental USA.
(b)

3.00 X 108 rn/s
A =

93.3 x 106s
3.22m.

The length of an FM antenna is about half this ( A), or 1 m.
(c)

3.00 X 108 rn/s
A 6.33 x l07m (= 633 nm)4.74 X 10s’

EXERCISE A What are the frequencies of (a) an8O-m-wavelength radio wave, and
(b) an X-ray of wavelength 5.5 X 10k’ m?

ESTiM1:J Cell phone antenna. The antenna of a cell
phone is often wavelength long. A particular cell -phone has an8.S-cm-long
straight rod for its antenna. Estimate the operating frequency of this phone.
APPROACH The basic equation relating wave speed, wavelength, and frequency
is c = Af; the wavelength A equals four times the antenna’s length.
SOLUTION The antenna is A long, so A =4(8.5cm) 34cm = 0.34 m.
Then f = c/A (3.0 x 108 m/s)/(0.34 m) 8.8 X 108 Hz = 880 MHz.
NOTE Radio antennas are not always straight conductors. The conductor may

round loop to save space. See Fig. 22—17b.

EXERCISE B How long should a -A antenna be for an aircraft radio operating at
165 MHz?

Electromagnetic waves can travel along transmission lines as well as in empty
Space. When a source of emf is connected to a transmission line—_be it two parallel
Wires a coay,j cable (Fig.22—9)the electric field within the wire is not set up
Immediately at all points along the wires. This is based on the same argument we
Used in Section 22—2 with reference to Fig. 22—5. Indeed, it can be shown that ifthe wires are separated by empty space or air, the electrical signal travels along the
Wires at the speed c = 3.0 X 108 rn/s. For example, when you flip a light
Switch, the light actually goes on a tiny fraction of a second later. If the wires are‘fl a medium whose electric permittivity is e and magnetic Permeability is
(Sections 17—8 and 20—12, respectively) the speed is not given by Eq. 22—3, but by

1
v=.

Wavelength and frequency =

related to speed

(22—4)

EM spectrum

Wavelength (m)
3 xl0m 3m

c 3.00 x 108 rn/s
A

=
5.0 X 106m,

3x104m 3xl08m -
3xl01m

102 l0 106

Frequency (Hz)
ià idio

1020

CI., CAUTION

Sound and Eli’! waves

al-c diffe,-ent

F1GURE 22—9 Coaxial cable.

I

620 CHAPTER 22 Electromagnetic Waves
SECTION 22—3 Light as an Electromagnetic Wave and the Electromagnetic Spectrum 621



ESTIMATE I Voice speed through the wires. When
you speak on the telephone from Los Angeles to a friend in New York some
4000 km away, how long does it take the signal carrying your voice to travel
that distance?

APPROACH The signal is carried on a telephone wire or in the air via satellite.
In either case it is an electromagnetic wave. Electronics as well as the wire or
cable slow things down, but as a rough estimate we take the speed to be
c = 3.0 x 108 rn/s.
SOLUTION Since speed = distance/time, then time = distance/speed
(4.0 x 106 rn)/(3.0 X 10 m/s) = 1.3 X 102s, or about

NOTE Such a small amount of time normally goes unnoticed.

EXERCISE C If your voice traveled as a sound wave, how long would it take iii

Example 22—3?

fr4! Measuring the Speed of Light
Galileo attempted to measure the speed of light by trying to measure the time
required for light to travel a known distance between two hilltops. He
stationed an assistant on one hilltop and himself on another, and ordered the
assistant to lift the cover from a lamp the instant he saw a flash from Galileo’s
lamp. Galileo measured the time between the flash of his lamp and when he
received the light from his assistant’s lamp. The time was so short that Galileo
concluded it merely represented human reaction time, and that the speed of
light must be extremely high.

The first successful determination that the speed of light is finite was made
by the Danish astronomer Ole Roemer (1644—1710). Roemer had noted that
the carefully measured orbital period of lo, a moon of Jupiter with an average
period of 42.5 h, varied slightly, depending on the relative motion of Earth and
Jupiter. When Earth was moving away from Jupiter, the period of To was slightly
longer, and when Earth was moving toward Jupiter, the period was slightly
shorter. He attributed this variation in the apparent period to the change in
distance between the Earth and Jupiter during one of To’s periods, and the time
it took light to travel this distance. Roemer concluded that the speed of light—
though great—is finite.

Since then a number of techniques have been used to measure the speed of

light. Among the most important were those carried out by the American
Albert A. Michelson (1852—1931). Michelson used the rotating mirror appa
ratus diagrammed in Fig. 22—10 for a series of high-precision experiments

carried out from 1880 to the 1920s. Light from a source was directed at one

face of a rotating eight-sided mirror. The reflected light traveled to a stationary
mirror a large distance away and back again as shown. If the rotating mirror

FIGURE 22-10 Michelson’s speed-
of-light apparatus (not to scale).

was turning at just the right rate, the returning beam of light Would reflect fromone face of the mirror into a small telescope through which the observerlooked. If the speed of rotation was only slightly different, the beam Would bedeflected to one side and would not be seen by the observer From therequired speed of the rotating mirror and the known distance to the stationarymirror, the speed of light could be calculated In the l920s, Michelson set upthe rotating mirror on the top of Mt. Wilson in southern California and thestationary mirror on Mt. Baldy (Mt. San Antonio) 35 km away. He latermeasured the speed of light in vacuum Using a long evacuated tube.Today the speed of light, c, in vacuum is taken as

C 2.99792458 X 108m/s,

and is defined to be this value. This means that the Standard for length, the meter,is no longer defined separately Instead, as we noted in Section i—s, the meter isnow formally defined as the distance light travels in vacuum in 1/299,792,458 ofa second.
We usually round off c to

C 3.00 )< lO8m/s

when extremely precise results are not required. In air, the speed is onlyslightly less.

* Energy in EM Waves
Electromagnetic waves carry energy from one region of space to another. Thisenergy is associated with the moving electric and magnetic fields. InSection 17—9, we saw that the energy density UE (J/m) stored in an electric field E
is UE =e0E2 (Eq. 17—11). The energy density stored in a magnetic field B,as we discussed in Section 21—10, is given by U B2/0 (Eq. 21—10). Thus,the total energy Stored per unit volume in a region of space where there is anelectromagnetic Wave is

U=uE+uB=EE2+1B2

(22—5)
In this equation, E and B represent the electric and magnetic field strengths of
the wave at any instant in a small region of space. We can write Eq. 22—5 in
te5 of the E field only using Eqs. 22—2 (B = E/c) and 22—3 (c = 1/)to obtain

u
=

€0E2 +
—__2

= E0E2.
(22—6a)

Note here that the energy density associated with the B field equals that due to
the E field, and each contributes half to the total energy. We can also write theenergy density in terms of the B field only:

B2U€0E2EC2B2

I

Michelson measures c

Observer
Stationary
mirror

Eight-sided
rotating mirror

rm Light
source
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I
(Mt. Wilson) (Mt. Baldy)

35km

ILo (22—6J)
or in one term containing both E and B,

U
= EOECB =

€0EB

— VEB. (22—6c)
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FIGURE 22—11 Electromagnetic

E

wave carrying energy through area A.

The energy a wave transports per unit time per unit area is the
intensity I, as defined in Sections 11—9 and l2—2. The units of I are
The energy passing through an area A in a time t (see Fig. 22—11) is

= u = (u)(A ix) (€0E2)(Act)

because Lix = c Lit. Therefore, the magnitude of the intensity (energy per
unit area per time Lit, or power per unit area) is

Au (eoE2)(Ac Lit)
2

ALit
=€0cE.

From Eqs. 22—2 and 22—3, this can also be written

Intensity
— — D2 —

I — E0Ci — — —

of EM waves
,-

The average intensity over an extended period of time, if E and B are sinusoidal
so that E2 = E/2 (just as for electric currents and voltages, Section 18—7), is

— 1 lc E0B0
Average intensity I = — —— Bg . (22—8)

2 2/.L0 2.t0

Here E0 and B0 are the maximum values of E and B. We can also write

= Erms Brms

where Erms and Brms are the rms values (Erms \/, By =

EXAMPLE 22-4

________________

E and B from the Sun. Radiation from the Sun reaches
the Earth (above the atmosphere) at a rate of about 1350J/sm2

(= 1350 W/m2). Assume that this is a single EM wave, and calculate the
maximum values of E and B.

APPROACH We are given the intensity I = 1350 J/5 m2. We solve Eq. 22—8
(1 = EOCE) for E0 in terms of I.

I 2(1350J/s.m2)
SOLUTION E0 = I— = I

V €0c V (8.85 X1012C2/Nm2)(3.00 X 10gm/s)

= 1,01 X iO V/rn.

From Eq. 22—2, B E/c, so

B0 =
= 1.01 X 10 V/rn

= X 106T.
C 3.00 X i0 rn/s

NOTE Although B has a small numerical value compared to E (because of

the way the different units for E and B are defined), B contributes the same
energy to the wave as E does, as we saw earlier.

tThe intensity I for EM waves is often called the Poynting vector and given the symbol S. Its direc

tion is that in which the energy is being transported, which is the direction the wave is traveling, and

its magnitude is the intensity (S = I).
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