Chp1: 8, 10, S1.1, 22,26,32,38,42

$$1.8: \theta = \frac{\arcsin(\frac{gl}{\mu_0^2})}{2}$$

1.10: From B \rightarrow A: 300m/s, from B \rightarrow C: 360m/s, from B \rightarrow D: 329m/s. The differences in speed here are of order ~10%, but since the soundwaves still move very fast, it would be hard to detect with something like stopwatches, but with an oscilloscope hooked up you could easily measure it.

- S1.1: (b) A hears sound at t = 0.33s C hears sound at t = 0.28s D hears sound at t = 0.30s
- (c) All observers will see light flash at the same time.
- (d) Since light does not move through a medium, it's velocity, c, is never affected.
- (e) Sound waves move with respect to their medium, which can also move. But light doesn't move through a medium.
- 1.22: 25 years

1.26: (a) gamma = 5/3 (b) $3.0 \times 10^{-8} s$ (c) 1000 pions left after d = 36m (d) 100 pions w/o dilation

1.32: length = 21.6m, $t = 9.0x10^{-8}s$, N = 1000 pions

1.38: (a) $\Delta x' = \gamma (\Delta x - v \Delta t)$, same for $\Delta y'$, $\Delta z'$ (b) v = 0.6c, $\Delta x' = -9 \times 10^8 \ m$

1.42: (a)
$$x'_F = d$$
, $t'_F = d/_C$, $x'_B = -d$, $t'_B = d/_C$,

(b)
$$x_F = \gamma(x_F' + vt_F') = \gamma(1+\beta)d$$

$$t_F = \gamma(t_F' + vx_F'/c^2) = \gamma(1+\beta)d/c$$

$$x_B = \gamma(x_B' + vt_B') = -\gamma(1 - \beta)d$$

$$t_B = \gamma(t_B' + vx_B'/c^2) = \gamma(1 - \beta)d/c$$

Chp2: None

Chp3: 6, 20d, 24a, S3.1, S3.2, S3.3, S3.4

- 3.6 (a) 4/3 gram of oxygen (b) 8/3 gram of oxygen
- 3.20 (d) 1.3 moles in one pound of sugar
- 3.24 (a) 1.37 x 10²² C atoms
- S3.1 Answer not given.
- S3.2. Answer not given.
- S3.3.
- S3.4 Answer not given.

Chp4: 4, 12, 16, S4.1, S4.2

- 4.4: (a) No answer. Make the substitution. Note: sigma contains an integral.
- (b) Algebra
- (c) P = 71W
- 4.12: (a) 650nm (b) 0.6eV
- 4.16: (a) 25MeV (b) 2.2 x 10⁶ photons / gamma ray photon
- S4.1: Answer not given.
- S4.2: Answer not given.
- S4.3: Answer not given.

Chp5: 12, S5.1, 14, 18, 20, 22, 26, S5.2

5.12: Lyman range: 91nm → 122nm
Balmer range: 365nm → 656nm
Paschen range: 820nm → 1875nm

Brackett range: 1458nm → 4050nm

S5.1:

- a. r = 0.0529 nm
- b. U = -27.2 eV
- c. K = 13.6 eV

d.
$$E = -13.6eV$$

e.
$$E_{1\rightarrow 3}=12.1 \text{ eV}$$

f.
$$r = 0.476 \text{ nm}$$

g.
$$lambda_{6\rightarrow 2}$$
= 409.1 nm (violet)
 $lambda_{2\rightarrow 1}$ 121.2 nm (UV)

5.14: (a) n = 5 (b) n = 17 (c)
$$3 \times 10^{-8}$$
 atm

5.20: (a)
$$r_{pion}=3.2 \times 10^{-14} \text{ m}$$

- (b) Yes, since orbital radius is greater than atomic nucleus radius
- (c) $r = 2.4 \times 10^{-14}$ m, which is less than the radius of the leads nucleus, so not possible...

5.22: m =
$$4.96 \times 10^7 \sqrt{Hz}$$

5.26: (a) 5.4 fm, this is 207 times smaller than the orbital radius of the innermost electrons, so there is little effect from the electrons on the pion

(b)
$$E = 4.66$$
MeV, wavelength = 266 fm

S5.2

- c. Orbital radius is about the same size as nucleus, so yes.
- d. About zinc (Z = 30)
- e. The particle needs a larger mass than the muon

S6.1

$$\lambda_{3eV photon} = 413.3 \text{ nm}$$

$$\lambda_{3\text{eV electron}}$$
= .708 nm $\lambda_{2\text{MeV photon}}$ = 620 fm

$$\lambda_{2MeV}$$
 electron= 642.5 fm

S6.2 E (1nm, 1ns) =
$$-0.52 E_0$$

- 6.26: (a) and (b) No answer, hint: v = dx/dt
- 6.32 No answer, another "show that" problem.
- S6.3

a.

$$A_1 = 0.651$$

$$A_2 = 0.276$$

$$A_3 = 0$$

$$A_4 = -0.138$$

$$A_5 = -0.110$$

- b. Screenshot
- c. Explain

6.48: (a)
$$\Delta E = 3.3 \times 10^{13} eV$$

(b)
$$\Delta \lambda \ 8 \ x \ 10^{-11} nm$$
, $\Delta \lambda /_{\lambda} = 1.5 \ x 10^{-13}$

Chp7: S7.1, 10, 12, 14, 20, S7.2, 26, 30, 34, S7.3

- S7.1 Answer not given.
- 7.9: Answer not given.
- 7.10: No answer
- 7.12: (a) $z = r(\cos(wt)-i\sin(wt))$, where $x = r\cos(wt)$ and $y = r\sin(wt)$ which are 90 degrees out of phase.
 - (b) |z| = r = constant
- 7.14: No answer
- 7.20: Sketch, no answer
- S7.2: Answer not given.
- 7.26: (a) No answer, just differentiate each twice
 - (b) No answer, use Euler's relation
- 7.30: (a) $|\psi_3(x)|^2 = \frac{2}{a} \sin^2(\frac{3\pi x}{a})$ Sketch not shown.
 - (b) a/6, a/2, 5a/6

(c) 2% and 1%

$$7.34: < x > = a/2$$

S7.3: Answer not given

Chp7: 40, 42, 44, 50

7.40: Sketch not shown.

7.42: Sketch not shown.

7.44: (a) No answer.

(b) Sketch not shown.

7.50: Do the integral, solve for A_0

Chp 8: 10, 20, S8.1, 36, S8.2, 38a

8.10:

N _x	N _y	E/E ₀	Degeneracy
3	2	25	1
2,4	2,1	20	2
1	2	17	1
3	1	13	1
2	1	8	1
1	1	5	1

8.20: No answer. Draw a picture, derive the expressions.

S8.1: If you get 1 for the normalization integral, then it is normalized.

8.36: (a)
$$L = \sqrt{l(l+1)}\hbar$$

(b)
$$E = -E_R/n^2$$
 with $n = I+1$, $I+2$,...

S8.2: answer not given

8.38 (a): Three possible states.

Chp8: 40, S8.3, 42, S8.4, 52

8.40: (a)

$$\frac{d^2}{dr^2}(rR) = \left(\frac{-2}{ar} + \frac{n(n-1)}{r^2} - \frac{2mE}{\hbar^2}\right)(rR).$$

(b) No answer shown.

S8.3: Answer not given.

$$8.42: < r > = 1.5a_B$$

S8.4:
$$r = a_B$$

8.52: (most probable) radius = 0.6 pm. (binding energy) E = 91 KeV