Outline for Day 6

Office hours: 2 - 4

In which we learn that EM radiation really must be quantized in packets of E = hf based on two more experiments

- X-rays
 - How produced
 - X-ray spectra and Duane-Hunt Experiment
 - Uses of x-rays in crystallography
- Compton Scattering reprise
- Four experiments confirm E = hf for EM radiation

Quantized Model of the Atom

- · Atomic spectra
- Bohr Model
- Worksheet

Outline for Day 6

Office hours: 2 - 4

In which we learn that EM radiation really must be quantized in packets of E = hf based on two more experiments

- X-rays
 - How produced
 - X-ray spectra and Duane-Hunt Experiment
 - Uses of x-rays in crystallography
- Compton Scattering reprise
- Four experiments confirm E = hf for EM radiation

- · Atomic spectra
- Bohr Model
- Worksheet

Features of spectra that need to be explained 1. Continuous background 2. f_{max} exists and doesn't depend on material 3. Spikes at certain frequencies Expect classically 1. Continuous background due to varying rates of deceleration of electrons. 2. No hard value of f_{max} 3. No spikes (explained in Chp 5)

Outline for Day 6

Office hours: 2 - 4

In which we learn that EM radiation really must be quantized in packets of E = hf based on two more experiments

- X-rays
 - How produced
 - X-ray spectra and Duane-Hunt Experiment
 - Uses of x-rays in crystallography
- Compton Scattering reprise
- Four experiments confirm E = hf for EM radiation

- Atomic spectra
- Bohr Model
- Worksheet

Outline for Day 6

Office hours: 2 - 4

In which we learn that EM radiation really must be quantized in packets of E = hf based on two more experiments

- X-rays
 - How produced
 - X-ray spectra and Duane-Hunt Experiment
 - Uses of x-rays in crystallography
- Compton Scattering reprise
- Four experiments confirm E = hf for EM radiation

- · Atomic spectra
- Bohr Model
- Worksheet

Outline for Day 6

Office hours: 2 - 4

In which we learn that EM radiation really must be quantized in packets of E = hf based on two more experiments

- X-rays
 - How produced
 - X-ray spectra and Duane-Hunt Experiment
 - Uses of x-rays in crystallography
- Compton Scattering reprise
- Four experiments confirm E = hf for EM radiation

- Atomic spectra
- Bohr Model
- Worksheet

Models of the Atom

- Thomson "Plum Pudding"
 - Why? Known that negative charges can be removed from atom.
 - Problem: Doesn't match scattering experiments
- Rutherford Solar System
 - Why? Scattering showed a small, hard core.

Balmer series: A closer look at the spectrum of hydrogen

Balmer (1885) noticed wavelengths followed a progression

$$\lambda = \frac{91.19 \text{nm}}{\frac{1}{2^2} - \frac{1}{n^2}} \quad \text{where n = 3, 4, 5, 6,}$$

Balmer used this formula to predict additional lines in the hydrogen spectrum.

Rydberg formula generalization of Balmer's formula

Balmer

$$\lambda = \frac{91.19 \text{nm}}{\frac{1}{2^2} - \frac{1}{n^2}}$$

$$\lambda = \frac{91.19 \text{nm}}{\frac{1}{m^2} - \frac{1}{n^2}}$$

Rydberg

Rydberg's formula predicted even more of the hydrogen spectral lines.

Obviously these equations describe something about the inner workings of an atom...

Outline for Day 6

Office hours: 2 - 4

In which we learn that EM radiation really must be quantized in packets of E = hf based on two more experiments

- X-rays
 - How produced
 - X-ray spectra and Duane-Hunt Experiment
 - Uses of x-rays in crystallography
- Compton Scattering reprise
- Four experiments confirm E = hf for EM radiation

- · Atomic spectra
- Bohr Model
- Worksheet

Bohr Atom

Bohr postulates a solar system like atom and uses classical physics to solve it:

- Electron attracted to nucleus by Coulomb force.
- Newton's laws valid so Coulomb force provides centripetal acceleration to make electron go in a circle.
- One non-classical assumption: The stable orbits are defined by

$$L = \frac{nh}{2\pi}$$

where L is the angular momentum of the electron, n is an integer, and h is Planck's constant.

By fiat, stable orbits don't radiate.

Derive Bohr atom energy levels

