Test	Estimate of the effect or association (co- variation) between X and Y and effect size It's important to not just acknowledge the estimate and whether it is statistical- ly significant, we should attend to the size of the effect.	Test Statistic Estimates are translated into test statis- tics. In one way or another, these are the estimate/the likelihood of sampling error.	Distribution The test statistics are compared to the distribution of mathematically derived test statistics that one would expect in a "null world" (where there is no association; it is zero). Those distributions are the source of the p-value, which is the probability of getting a test statistic of this magnitude or larger in a null world. If small (p<.05), we can reject the null. Our finding is "statistically significant."
T-test intvar + dichotomous	The estimate of the effect is the difference between the means . Effect size measure is Cohen's d . It follows the .1, .3, and .5 and up benchmarks for small, moderate, and large.	t-statistic $\ell = \frac{\text{observed difference between sample means}}{\text{standard error of the difference between the means}}$ or $\ell = \frac{\bar{X}_1 - \bar{X}_2}{s_{2_1 - \bar{x}_2}}$ where \bar{X}_1 is the mean for sample 1 \bar{X}_2 is the mean for sample 2 $s_{2_1 - x_2}$ is the standard error of the difference between the means	Student's t Distribution Student's t Distribution (Control of the second state of the
ANOVA intvar + multicategorical	The estimate of the effect is the difference between the means. Effect size measure is eta-squared . This is inter- preted as the percent of variation in Y that is ex- plained by the categorical variable. (.1, .3, .5 and up for small, moderate, and large).	F-value The calculation of the F is fairly involved (see Ur- dan). At base, it is the ratio of the variation we see between the groups and the variation we see within groups. $F = \frac{MS_{group}}{MS_{error}}$	Oensity of F-statistic under Ho Image: Constraint of the state
Crosstab categorical + categorical	The effect is observed in the overall difference between observed frequencies in cells and the expected (by chance) frequencies. In practice, we compare each group's %s in the outcome categories to see how they differ. We typically comparing the within row %s. Effect size measure is Cramer's V. (follows the .1, .3, .5 and up benchmarks for small, moderate, and large effects.	Chi-square <u>TABLE 14.5</u> Formula for Calculating χ^2 $\chi^2 = \sum \left(\frac{(O-E)^2}{E}\right)$ where O is the observed value in each cell and E is the expected value in each cell	Two-tailed Chi-Square test (5% significance)
Correlation/Simple Regression intvar + intvar	The estimate is the Pearson's r correlation coefficient. . 1 small/weak .3 moderate .5 and up strong $r = \frac{\sum Z_X Z_Y}{n-1}$	t-value $ \frac{T - \text{test for Correlation Coefficient}}{t = r \sqrt{\frac{n-2}{1-r^2}}} $ where, r = correlation coefficient n = total number of observations Degree of freedom, df = n - 2	Depending on whether we specify a direction in our alternative hypothesis, we use either the one-tailed test or the two-tailed test. You can see that a one-tailed test (directional) doesn't require as large a test statistic al significance. $\int_{0}^{\frac{1}{2}} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$