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Inferential Statistics: A Preview 

    With descriptive statistics we condense a set of known numbers into a few simple values (either 

numerically or graphically) to simplify an understanding of those data.  This is analogous to writing up a 

summary of a lengthy book.  The book summary is a tool for conveying the gist of a story to others, and 

the mean and standard deviation of a set of numbers is a tool for conveying the gist of the individual 

numbers (without having to specify each and every one).  Inferential statistics, on the other hand, is used 

to make claims about the populations that give rise to the data we collect.  This requires that we go 

beyond the data available to us.  Consequently, the claims we make about populations are always 

subject to error; hence the term "inferential statistics" and not deductive statistics. 

    Inferential statistics encompasses a variety of procedures to ensure that the inferences are sound and 

rational, even though they may not always be correct.  In short, inferential statistics enables us to make 

confident decisions in the face of uncertainty. 

At best, we can only be confident in our statistical assertions, but never certain of their accuracy. 

Trying to Understand the True State of Affairs 

    The world just happens to be a certain way, regardless of how we view it.  The phrase "true state of 

affairs" refers to the real nature of any phenomenon of interest.  In statistics, the true state of affairs refers 

to some quantitative property of a population.  Numeric properties of populations (such as their means, 

standard deviations, and sizes) are called parameters.  Samples (or subsets) of populations also have 

numeric properties, but we call them statistics. Thus, for the scientist using inferential statistics, population 

parameters represent the true state of affairs. 
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    We seldom know the true state of affairs.  The process of inferential statistics consists of making use of 

the data we do have (observed data) to make inferences about population parameters.  Unfortunately, the 

true state of affairs is also dependent on all of the data we don't have (unobserved data).  Nevertheless, 

an important aspect of sample data is that they are actual elements from an underlying population.  In this 

way, sample data are 'representatives' of the population that gave rise to them.  This implies that sample 

data can be used to estimate population parameters. 

    However, as sample data are only representatives, they are not expected to be perfect estimators.  

Consider that we necessarily lose information about a book when we only read a book review.  Similarly, 

we lack information about a population when we only have access to a subset of that population.  

Remember that the parameters of a population (say, its mean and standard deviation) are based on each 

and every element in that population.  It would be useful to have some measure of how reliable (or 

representative) our sample data really are.  To this end, we must first consider the sampling process 

itself, and it is in this context that the importance of probability theory and random and independent 

sampling begin to emerge. 

In the absence of prior knowledge about the details of some population 
of interest, sample data serve as our best estimate of that population.  

True State of Affairs + Chance = Sample Data 

    Some elements (say, 'heights') in a population are more frequent than others.  These more frequent 

elements are thus over-represented in the population compared to less common elements (e.g., the 

heights of very short and very tall individuals).  The laws of chance tell us that it is always possible to 

randomly select any element in a population, no matter how rare (or under-represented) that element may 

be in the population.  If the element exists, then it can be sampled, plain and simple.  However, the laws 

of probability tell us that rare elements are not expected to be sampled often, given that there are more 

numerous elements in that same population.  It is the more numerous (or more frequent) elements that 

tend to be sampled each time a random and independent sample is obtained from the population. 

    A sample is random if all elements in the population are equally eligible to be sampled, meaning that 

chance, and chance alone, determines which elements are included in the sample.  A sample is 

independent if the chances of being sampled are not affected by which elements have already been 

sampled.  To illustrate these two ideas, imagine that you are interested in the average age of all university 

students in the United States.  For convenience sake, you decide to randomly select one student from 

each class offered at your university this term.  With respect to the original population of interest (all 

university students in the U.S.), your sample is not random, because only students at your university are 

eligible to be sampled.  Your sample is also not independent, because once you select a student from a 

class, no other student in that class has a chance of being sampled.  In this case, any claims you make 



based on your sample cannot be applied to the population you are really interested in.  At best, you are 

only investigating the population of students at one particular university. 

    When the sampling process is truly random and independent, samples are expected to reflect the most 

representative elements of the underlying population.  But rare outcomes do occur (every now and then). 

A rare sample occurs when, just by chance, a relatively large number of the extreme (high or low) 

elements in the population end up in the sample.  In other words, the percentage of extreme values in the 

sample is higher than the actual percentage in the population, as might be the case if you measured the 

heights of everyone present in the basketball locker room.  Although the heights of basketball players are 

part of the overall population, they are likely to be over-represented in the sample, in which case the 

sample mean would not accurately reflect the true state of affairs.  Specifically, the sample mean would 

be biased by the presence of too many heights from "tall" people.  

    An important consequence of random and independent sampling is that chance factors virtually 

guarantee that sampled data will vary in their degree of representativeness from sample to sample.  Most 

samples will tend to be good approximations of the underlying population, and a minority of samples will 

provide misleading accounts of the true state of affairs--just by chance selection.  The problem, of course, 

is that we can never know whether our particular sample is biased by the presence of too many extreme 

(i.e., rare) elements.  But just as you probably don't expect to win the lottery, you should also not expect 

to be the rare individual who just happens to obtain a rare sample.  It is not rational to expect an outcome 

that has a low probability associated with it.  Hence, the logic is to assume that any particular sample 

mean is typical of the underlying population.  This assumption is reasonable only when the sampling 

process is random and independent; otherwise, rare samples might artificially occur too often. 

    To summarize thus far, the underlying population represents the true state of affairs, which naturally 

affects the outcome of any particular sample.  For instance, if the shortest person in the population is 4' 

and the tallest person is 8', then it must be the case that the mean of any sample taken from the 

population will fall within the range of 4 to 8 feet.  There are also chance factors operating on the 

sampling process, which makes it very unlikely that exactly the same elements will be sampled each time. 

Thus, sample data are expected to vary across repeated sampling.  This "sampling error" must be taken 

into account when making inferences about a population from sample data.  

    Sampling error refers to discrepancies between the statistics of random samples and the true 

population values; but this "error" is simply due to which elements in the population end up in the sample.  

In other words, sampling error refers to natural chance factors, not to errors of measurement or errors due 

to poorly designed and poorly executed experiments.  We have control over the latter, but nature imparts 

a certain degree of unavoidable error. 

    To illustrate the idea of sampling error, imagine that we toss a fair coin six times and obtain 

{HHHHHH}.  We expect a fair coin to land heads 50% of the time, so what went wrong?  To answer this 



question, we have to think about the population of outcomes when a fair coin is tossed six times (see 

Figure 1). 

 
Figure 1. Sampling distribution of heads when a fair coin is tossed six times. 

    It turns out there are N = 64 possibilities, but only 20 contain exactly three heads and three tails.  

Nonetheless, three heads (in any order) is the most frequent element in this population; it is also the 

mean.  In contrast, there is only one outcome containing exactly six heads, which makes it a rare (but not 

impossible) event.  In fact, Figure 1 allows us to easily calculate the exact probability of {HHHHHH}; it is 

1/64 (or .016).  Likewise, the probability of three heads is 20/64 (or .313), meaning that we expect to get 

three heads about 1/3 of the time we toss a fair coin six times.  It was because of random sampling that 

we failed to observe one of these more representative samples, such as {HTHHTT}, not because the 

mean of the population isn't really 3.  Thus, {HHHHHH} is an example of sampling error.  It is "error" in the 

sense that the true population mean is 3 heads, but the sample (i.e., the six tosses) yielded 6 heads, just 

by chance.  If our sampling (coin tossing) process is fair, then we expect this rare event to occur about 

once every 64 times, on average. 

The laws of chance combined with the true state of affairs create a 
natural force that is always operating on the sampling process. 

Consequently, the means of different samples taken from the same 
population are expected to vary around the 'true' mean just by chance. 

Sampling Distributions 

    A population is the collection of all possible elements that fit into some category of interest, such as "all 

adults living in the United States."  Once we've defined a population, we need to specify with respect to 



what?  For instance, all adults living in the United States with respect to their height.  Now the population 

of interest has shifted from a collection of people to a collection of numbers (heights, in this case).  When 

the elements in the population have been measured or scored in some way, it is possible to talk about 

distributions.  We can generate a distribution of anything, as long as the elements can take on values.  

This is precisely what we did in the coin-tossing example.  First we obtained a sample of six tosses, and 

then we scored the sample with respect to the number of heads.  If we had done this for all 64 possible 

samples and then counted the number of times each value (0 through 6) occurred, we would have ended 

up with the frequency distribution in Figure 1.  We could also have calculated the mean number of heads 

for each sample, in which case the x-axis would have consisted of seven means ranging from 0 (0/6) to 1 

(6/6), with 0.5 (3/6) in the middle.  This would show more clearly that the probability of heads is 0.5 (or 

50%) in the population, regardless of the number of tosses. 

    When the distribution of interest consists of all the unique samples of size n that can be drawn from a 

population, the resulting distribution of sample means is called the sampling distribution of the mean.  

Thus, a "sampling distribution" in general is a distribution of sampling outcomes, like the one depicted in 

Figure 1.  A sampling distribution of the mean is one particular kind of a sampling distribution, one that is 

based on sample means.  There are also sampling distributions of medians, standard deviations, and any 

other statistic you can think of. 

Populations, which are distributions of individual elements, give rise to 
sampling distributions, which describe how collections of elements are 

distributed in the population. 

    It may be helpful to think of populations has having their own sampling distributions, because we are 

now making a distinction between two distributions: (a) the distribution of individual elements (the 

population) and (b) the distribution of all unique samples of a particular size from that population (the 

sampling distribution).  [A sample is unique if no other sample in the distribution contains exactly the 

same elements.]  Before reading on, make certain that you are comfortable with the idea that a sample of 

elements can represent a single, unique element in a distribution consisting of many other unique 

samples (see Table 1). 

Table 1. Basic Properties of Populations, Samples, and Sampling Distributions 

Level Collection Elements 

Population 
All individuals 
(N = size of population)  

The scores each individual 
receives on some attribute.  

Sample 
Subset of individuals from the 
population. 
(n = size of sample)  

The scores each individual in 
the sample receives on some 
attribute.  

Sampling Distribution 
All unique samples of size n 
from the population.  

The values of a statistic applied 
to each sample.  



    Why are sampling distributions important in inferential statistics?  The answer is simple: because we 

obtain samples of data when we conduct studies.  If we are going to make inferences about populations 

based on sample data, then we need to understand the sampling properties of those samples.  In 

inferential statistics we make use of two important properties of sampling distributions, better known as 

the central limit theorem: 

1. The mean of all unique samples of size n (i.e., the average of all the means) is identical to 
the mean of the population from which those samples are drawn.  This is equivalent to 
saying that the mean of the sampling distribution equals the mean of the original 
population.  Thus, any claims about the mean of the sampling distribution apply to the 
population mean.  

2. The shape of the sampling distribution increasingly approximates a normal curve as 
sample size (n) is increased, even if the original population is not normally distributed. 
[Note--If the original population is itself normally distributed, then the sampling distribution 
will be normally distributed even when the sample size is only one.  Why?]   

Confused? Perhaps if you see these properties you'll understand just how simple they really are.  First 

let's create a small, hypothetical population of numbers: 

Pop = {2, 5, 7, 3, 2} 

The distribution for our hypothetical population looks like this: 

 

In this case N = 5 (because there are five elements in the population), and µ = 3.8 (the mean of the 

population).  Property #1 says that if we gather all the unique samples of a particular size, and then 

calculate means for each sample, the average of those means will equal the population mean.  We'll do 

this twice, once using n = 3, and again using n = 4.  Table 2.1 lists all of the unique samples (and their 

means) that are possible when three elements are sampled at a time. 

 

 

 



Table 2.1. All unique samples from the hypothetical population when n = 3. 

Sample Sample Mean 
{2 2 3} 2.33 
{2 2 5} 3.00 
{2 3 5} 3.33 
{2 3 5} 3.33 
{2 2 7} 3.67 
{2 3 7} 4.00 
{2 3 7} 4.00 
{2 5 7} 4.67 
{2 5 7} 4.67 
{3 5 7} 5.00 

Grand Mean 3.80 

    At first glance it may appear that the samples in Table 2.1 are not unique because, for example, {2 3 5} 

has been listed twice.  However, remember that there are two 2s in the population; they are different 

elements that simply share the same value.  Thus, Table 2.1 indicates there are 10 unique samples in the 

sampling distribution when n = 3.  Notice also that the mean of the 10 sample means is 3.8.  This is the 

same value we obtained when we calculated the mean of the five elements in the population (µ).  Now 

consider Table 2.2, which lists all of the unique samples that are possible when sample size is increased 

to four.  The first thing to notice is that the range of sampling outcomes is smaller ( 3.00 to 4.25 instead of 

2.33 to 5.00)—there is less variability.  Nonetheless, the mean of the sample means is still 3.8. 

Table 2.2. All unique samples from the hypothetical population when n = 4.  

 
Sample 

Sample 
Mean 

{2 2 3 5} 3.00 
{2 2 3 7} 3.50 
(2 2 5 7} 4.00 
{2 3 5 7} 4.25 
(2 3 5 7} 4.25 

Grand Mean 3.80 

    The central limit theorem also states that the sampling distribution will approximate a normal 

distribution if sample size is sufficiently large, even if the underlying population is not normally distributed.  

It is clear that the hypothetical population in our example is not normally distributed, primarily because it is 

so small.  For example, the distribution is not symmetrical around its mean, which is the most salient 

feature of normal distributions.  But compare the shape of the population with the shape of the sampling 

distribution corresponding to Table 2.1:  



 

These 10 sample means are far from being normally distributed, but we can see hints of a bell curve: The 

distribution is peaked near the center and shorter at the tails. This distribution is also more symmetrical 

around its mean compared with the underlying population.  If our hypothetical population were somewhat 

larger (so that more samples could be generated), the sampling distribution would be more normal.  

Nonetheless, we can still see the effects of the central limit theorem even with this overly-simplified 

example.  Most real-world populations are very large, and so their sampling distributions contain millions 

of sample combinations and therefore many possible values of a statistic. 

The Standard Error of the Mean: A Measure of Sampling Error 

    Sampling distributions have a standard deviation, which describes the variability of sample means from 

their mean (which, remember, equals the population mean).  There is a different sampling distribution for 

each value of n, for two reasons. First, as illustrated above, the number of unique samples that can be 

drawn from a population depends on the size of those samples.  In other words, sample size determines 

how many elements (sample means) are in the sampling distribution to begin with.  Second, as sample 

size increases, the variability among all possible sample means decreases.  This must be the case, 

because if all the elements in the original population are sampled (i.e., if n = N), then there is only one 

possible sample that can be obtained (the sample is the population) and the variability of a single number 

is zero.  Thus, sample size determines both the size and the variability of a sampling distribution 

(compare Tables 2.1 and 2.2). 

    The standard deviation of a sampling distribution of means is given a special name: standard error of 

the mean (abbreviated as SEM).  It may not be obvious, but the SEM is a measure of sampling error 

because it describes the variability among all possible means that could be sampled in an experiment.  

[Recall that the elements of interest are now sample means, not the individual scores within a sample or 

population.]  Simply put, the degree of variability in the sampling distribution bears directly on the degree 

to which observed results (sample means) are expected to vary just by chance.  If there is a lot of 



variability in the sampling distribution (as is the case when the distribution consists of small samples),  

then sample means can vary greatly.  On the other hand, if there is little variability in the sampling 

distribution (as is the case when the distribution consists of large samples), then sample means will tend 

to be very similar, and very close to the true population mean. 

    At this point we can begin to address the question raised earlier, namely How can we know whether 

our sample is representative of the underlying population?  Obviously it is important to avoid small 

samples, as there are more extreme (i.e., rare) sample means in the sampling distribution--and we are 

more likely to get one of them in an experiment.  Thus, we can increase our confidence in a particular 

sample (as being representative of the population) by increasing the number of elements included in the 

sample.  The means of large samples tend to cluster tightly around the true population mean.  

Consequently, rare samples (whose means are very different from the true population mean) are less 

common in the sampling distribution and therefore less likely to arise just by chance.  Notice that by 

choosing a sample size we are also determining which sampling distribution our sample will come from.  

Ideally, we always want to sample from the distribution with the least variability, because less variability 

translates into more reliability! 

We have some control over sampling error because sample size 
determines the standard error (variability) in a sampling distribution. 

Theoretical Sampling Distributions as Statistical Models of the True State of Affairs 

    Unless the details of a population are known in advance, it is not possible to describe any of its 

sampling distributions.  We would have to first measure all the elements in the population, in which case 

we could simply calculate the desired parameter, and then there would be no point in collecting samples.  

For this reason, a variety of idealized, theoretical sampling distributions have been described 

mathematically.  The Student-t distribution, for instance, is a standardized version of a theoretical 

sampling distribution, meaning that it can be used as a statistical model for many of the real sampling 

distributions of interest to behavioral scientists.  The reason for using theoretical sampling distributions is 

to obtain the likelihood (or probability) of sampling a particular mean if the mean of the sampling 

distribution (and hence the mean of the original population) is some particular value.  In practice, the 

population parameter must first be hypothesized, as the true state of affairs is generally unknown. This is 

called the null hypothesis. 

    In the coin-tossing example we were able to deduce the sampling distribution shown in Figure 1.  It too 

is theoretical because we constructed it without tossing a single coin!  This underscores an important 

point, namely that many of the populations and sampling distributions addressed in statistics are abstract; 

they exist in a mathematical sense.  



Theoretical sampling distributions have been generated so that 
researchers can estimate the probability of obtaining various sample 

means from a pre-specified population (real or hypothetical). 

Making Formal Inferences about Populations: Preview to Hypothesis Testing 

    When there are many elements in the sampling distribution, it is always possible to obtain a rare 

sample (i.e., one whose mean is very different from the true population mean).  The probability of such an 

outcome occurring just by chance is determined by the particular sampling distribution specified in the null 

hypothesis (in much the same way that Figure 1 provided us with the probability of tossing 6 heads).  

When the probability (P) of the observed sample mean occurring by chance is really low (typically less 

than one in 20, e.g., P < .05), the researcher has an important decision to make regarding the 

hypothesized true state of affairs.  One of two inferences can be made:  

1. The hypothesized value of the population mean is correct and a rare outcome has 
occurred just by chance (as in the coin-tossing example).  

2. The true population mean is probably some other value that is more consistent with the 
observed data.  Reject the null hypothesis in favor of some alternative hypothesis.   

The rational decision is to assume #2, because the observed data (which represent direct, albeit partial, 

evidence of the true state of affairs), are just too unlikely if the hypothesized population is true.  Thus, 

rather than accept the possibility that a rare event has taken place, the statistician chooses the more 

likely possibility that the hypothesized sampling distribution is wrong.  However, rare samples do occur, 

which is why statistical inference is always subject to error.  Indeed, even when observed data are 

consistent with a hypothesized population, they are also consistent with many other hypothesized 

populations.  It is for this reason that the hypothesized value of a population parameter can never be 

proved nor disproved from sample data.  We use inferential statistics to make tentative assertions about 

population parameters that are most consistent with the observed data.  Actually, inferential statistics only 

helps us to rule out values; it doesn't tell us what the population parameters are.  We have to infer the 

values, based on what they are likely not to be. 

    Only in the natural sciences does evidence contrary to a hypothesis lead to rejection of that hypothesis 

without error.  In statistical reasoning there is also rejection (inference #2), but with the possibility that a 

rare sample has occurred by chance (sampling error).  This is the nature of making inferences based on 

random sampling. 
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